Graphs and Zero-divisors

نویسندگان

  • M. AXTELL
  • Istvan Beck
چکیده

In an algebra class, one uses the zero-factor property to solve polynomial equations. For example, consider the equation x 2 = x. Rewriting it as x (x − 1) = 0, we conclude that the solutions are x = 0, 1. However, the same equation in a different number system need not yield the same solutions. For example, in Z 6 (the integers modulo 6), not only 0 and 1, but also 3 and 4 are solutions. (Check this!) In a commutative ring R (like Z 6), an element r is a zero-divisor if there exists a nonzero s ∈ R such that rs = 0. In Z 6 the zero-divisors are 0, 2, 3, and 4 because 0 · 2 = 2 · 3 = 3 · 4 = 0. A commutative ring with no nonzero zero-divisors is called an integral domain. The zero-factor property used in high school algebra holds for integral domains, but does not hold for all commutative rings. Because of this, ring theorists find zero-divisors very interesting. In general, the set of zero-divisors lacks algebraic structure. In particular, the set of all zero-divisors of a ring R, denoted Z(R), is not always closed under addition. In Z 6 , we see that 2 and 3 are zero-divisors, but 2+3 is not. Hence, Z(R) is typically not a subring and thus also not an ideal. Recently, a new approach to studying the set of zero-divisors has emerged from an unlikely direction: graph theory. In this paper we present a series of projects that develop the connection between commutative ring theory and graph theory. These are suitable for a student who has completed an introductory undergraduate abstract algebra course. Projects not marked with an asterisk are straightforward and should require well less than

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

On zero divisor graph of unique product monoid rings over Noetherian reversible ring

 Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors.  The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero  zero-divisors of  $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$.  In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...

متن کامل

On quasi-zero divisor graphs of non-commutative rings

Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...

متن کامل

Zero-divisors and Their Graph Languages

We introduce the use of formal languages in place of zerodivisor graphs used to study theoretic properties of commutative rings. We show that a regular language called a graph language can be constructed from the set of zero-divisors of a commutative ring. We then prove that graph languages are equivalent to their associated graphs. We go on to define several properties of graph languages.

متن کامل

A Submodule-Based Zero Divisors Graph for Modules

‎Let $R$ be commutative ring with identity and $M$ be an $R$-module‎. ‎The zero divisor graph of $M$ is denoted $Gamma{(M)}$‎. ‎In this study‎, ‎we are going to generalize the zero divisor graph $Gamma(M)$ to submodule-based zero divisor graph $Gamma(M‎, ‎N)$ by replacing elements whose product is zero with elements whose product is in some submodules $N$ of $M$‎. ‎The main objective of this pa...

متن کامل

An Investigation of the Structure Underlying Irreducible Devisors

In previous literature Coykendall & Maney, as well as Axtell & Stickles, have discussed the concept of irreducible divisor graphs of elements in domains and ring with zero-divisors respectively, with two different definitions. In this paper we seek to look at the irreducible divisor graphs of ring elements under a hybrid definition of the two previous ones—in hopes that this graph will reveal s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010